NationStates Jolt Archive


Artillery Storefront

The Macabees
06-02-2005, 19:54
Notes: READ!
1. This is 2005 to 2010 technology. Take in mind that with nation states GDP technological advance occurs much faster than real world advancement, thusly, I'm going to pull out some stuff that doesn't belong for real world fanatics - so, if you're one of those, please don't post OOCly here.
2. Absolutely no production rights. Don't ask. Furthermore, since other nations are doing it, and nobody complains about realism, you try to dismantle them or copy them a mechanism fuses and destroys the core of the technology.
3. Do your own math.

------------------------

155mm Krigud Sel Propelled Artillery Gun
The Armor:
50mm of MEXAS armor, giving it an RHA value of ca. 1500mm. It also has a superior coating of 20mm of Chobham composite.


MEXAS density is ~1.7g/cc and reactive elements are reported in the construction with a strenght of 2.5 GPa, not many materials are that strong but Boron Carbide could fit the bill.
B4C has a mass of 2.55g/cc and ME vs shaped charges of ~ 4.0...leading to a space effectiveness of ~ 1.3.

Now a mixture of CaCO/GAP and B4C should have a density of 1.7-1.8 g/cc [2.55g/cc+1.0g/cc ÷2]. Some thing with the density of CaCO/Gap should have an effectiveness of ~ 0.7 [space effectiveness] so a average of B4C & CaCO/GAP should be ~ 1.0 spaced effectiveness...

The ME should be 7.83/1.7= 4.6.

But the CaCO/GAP is reactive and generates a considerable improvement in effectivenes because this reactive forces the steel plates apart...using the VM-11 paper as a guide the ME of steel foam is ~ 3.3 while the value for steel CaCO/GAP is ~ 10.0...meaning this reactivity tripled the effectiveness of the sandwich...

If this same reactivity is applied to the above B4C & CaCO/GAP sandwich we end up with ~ 14:1 Me.

Now in this paper there were reactive elements that were tested with thin explosive layers to enhance the bulging effect on the outer steel plates...these ranged from 4-6 times the base values and if these super reactive forces are applied to the MEXAS model thats 4.6 x 4-6 or ME of 18:1 -28:1.

The paper showed that MEXAS @ 15° offers as much protection as ERA @ 60-70°. If you take Blazer this is two 2-3mm steel plates and a couple of mm of explosives [density ~ 1.8g/cc?]...any way thats ~ 6mm steel mass @ 60-70° or 12-18mm steel...the ME of these ERAs are reported to be ~ 20:1 meaning this resistance is ~ 240-350mm. Thus MEXAS with a steel mass of ~ 7mm is as effective as >250mm RHAe or a ME of 36:1!!!!

Heres the crunch...studies of bulging plates show that plate speed is the key. Well if the above chemical reactive forces can 'bulge' a plate sufficently to tripple quadruple its effectiveness , image how effective they would be on a small ceramic [B4C ]nugget? Rosenberg and Dekel wrote several papers on the parameters of this bulging prossess...it was clear that if you increases the interlayer or reduced the thickness of the outer steel plate [mass], the plate bulging velocity shot up [going from 200-800m/s in some cases].

Could be that instead of tripple its 6-8 times the ME against shaped charges? That would be an ME of ~ 32-37 .


Gunnery and Fire and Control:
The new self propelled artillery gun has a quadruple 155mm gun battery in circular fashion, although the barrels do not rotate. The 155mms can fire anything from SCRAMjet artillery rounds to the SABOT Ausf. B rounds. With the SCRAMjet shells it can reach ranged of up to 150kms.

The KriGud uses the Mercy Mission fire and control, alternation flight patterns for the shells, so up to six shells, all fired within a minute with the advanced hydraulics system, hit six different areas at the same exact time. Consequently, it takes out six different targets without each one becoming aware of the strike (allowing counter-battery charges) before each one being pelted by shells. The Mercy Mission has also been upgraded so that a battery of KriGuds would be able to each fire six shells and put all of their shells, together, on the ground at the same time, allowing for even greater suprise bombardments of the type. On top of that, since the KriGud had four barrels on each vehicle a total of twenty-four (plus the rest of the KriGud battery) shells to rain upon the enemy at the same exact time.

To control the recoil a support vehicle, that also feed ammo through a slot in the rear, makes use of a strap, that fastens electronicall within ten seconds, around the KriGud, thereby straping it to the ground so that the KriGud doesn't flip over after each launch.

Engine:
The KriGud uses a 1,800hp diesel engine to conserve fuel, and still give it quite enough power to commit itself in battle. It's maximum velocity is thirty miles per hour.

Production Cost (Including Support Vehicle): 5 million USD
Export Cost (Including Support Vehicle): 7 million



------------------------------------->
155mm Chevalier/Gabriel SP artillery

Designers:
Macabees and ZIAA(Greater Duestchland)


Description:

The Chevalier uses a dynamic new engine system in use by the Merkava 4 of Israel which saves a load of petroleum - giving it twice the distance on one tank, and cutting logistics costs by billions. Military experts figured that a beast over 100 tons going over 40 mph was a waste of resources and a big mistake. Most tactical battles were fought at a much smaller rate - and even it they went faster they were still concluded with the same result. Hence, the engine has been compacted to 1200 hp diesel engine, with a maximum speed of 30 mph. This is not as bad as it sounds - it is truly impractical to go over 25 on most of the earth's surfaces and it cuts down on refueling. In Destert Storm US Army VII Corps under General Franks had to wait to refuel their Abrams (with a normal engine), which consequently allowed the Republican Guard to escape and reform. Another advantage of this engine is that it produces far less heat, thus being less vulnerable to infra-red mortar rounds and heat-seeking top-attack ATGMs. Additionally, the curret gast turbine engine produces so much heat that infantrymen cannot follow behind for protection. This engine burns at 1.2 gallons a mile.

For ammunition it uses a scramjet 155mm artillery round, launching it at 50km range. The scramjet basically means the combustion takes place at supersonic air velocities through the engine. The expansion of hot gases after fuel injection and combustion accelerates the exhaus air to a velocity highter than at the inlet and creates positive push. This rocket propelled round hits its target at up to 6.5 mach. Furthermore, it's loaded with Octanitrocubane, the most powerful explosive known to man - although not currently used in the military (Octogen is used at present) - allowing for a much greater punch. This 155mm round (loaded with Octanitrocubane - c8n8016) is referred to in Spanish military jargon as the MARA - while the second type of round, which is designed to be more of a HEAT type round, still powered by scramjet is referred to as the MARB. The Chevalier holds 40 MARAs and 10 MARBs.
http://www.g2mil.com/scramjet.jpg

In the area of armor it has up to 900mm of NERA armor. Although light, this is not a front line vehicle, thus the having heavier armor would be both impracticle and a waste of resources - as the heavier it gets, the slower it drives. Linked with the engine this allows the Chevalier 750km of driving distance on one tank.

For self protection it also has one co-axial MG90, in use by the commander.


Cost of Production: 2.5 mil per unit
Cost of Exportation: 5 mil per unit



------------------------------------------>

Incinérateur 155mm Rapid Fire Artillery
With the advent of methods to stop rapid rocket artillery launches it became imperative that a machine capable of firing shells, not rockets, in massive quatities in seconds' timing be researched and produced. During his years before the takeover Catalan designed such a machine, and he first began to impliment them in the Second War of Spanish Succession.

The Incinérateur uses a ten barrel 155mm diameter (per barrel) artillery gun, using the "R" rings which are used on Macabee tanks. In any case, using state of the art hydraulics a fixed Incinérateur can load and fire 155mm round after round - anything from normal artillery shells to SABOT Ausf. B shells for anti-tank purposes. The barrels do not fire harmonically, and instead fire in sequence, rotating much like a machine gun, or anything else of this sort.

For cooling purposes the barrels use an LN2 coolant, mixed with a a specially produced coolant called SCP, which works to transfer heat and reduce friction. These coolants are specially injected, and this is done around every five hundred shells launched. The process itself is done mechanically, and takes about thirty seconds to complete.

The hydraulic systems load each shell when the barrel turrer rotates to the next one, and it takes half a second to load it, merely pushing it in, as the barrel it's loading is at ground level.

This forces the gun to be very fixed, and to move it it requires dismantling of certain parts, and this itself takes about ten minutes to dismantle, x minutes to move and five minutes to put together again. However, what is gained from it supercedes the cons. A single Incinérateur can fire all ten rounds in ten seconds, making a great number of these very deadly. It can fire all five hundred shells in fifty second. However, it does use ammunition up quickly so rate of fire can be decreased.

The hydraulics on the base allow the gun to be raised or lower according to target, and it can even be lowered parallel to the ground, allowing for anti-tank operations. It's fire and control is even better. Using a central computer the barrels use miniature hydraulics to move left or right according to target, and use the computer to lock on, launching an extremely accurate shell right at the victim. However, the traverse of these hydraulics is not one of a tank, one must remember.

Depending on the type of round in use it can fire to a maximum of two hundred kilometers distance, making it one of the world's most capable artillery guns.

Cost of Production:75,000 USD
Cost of Export:300,000 USD


------------------------------>
More coming soon..
The Macabees
06-02-2005, 19:55
reserve 1
The Macabees
06-02-2005, 19:57
reserve 2
Praetonia
06-02-2005, 20:02
OOC: So you're saying an artillery piece with 4 barrels can fire 6 individually aimed shots with each barrel within the time it takes for the first to land and has armour 50% stronger than that of any RL MBT and this will all be possible in 5 years? For the same price as an M1A2?
The Macabees
06-02-2005, 20:03
OOC: So you're saying an artillery piece with 4 barrels can fire 6 individually aimed shots with each barrel within the time it takes for the first to land and has armour 50% stronger than that of any RL MBT and this will all be possible in 5 years? For the same price as an M1A2?

OOC: Mercy mission is employed by the Crusader 155mm SP Gun, so that's possible - and MEXAS, although strong (and also employed by the German army on their APCs) doesn't fare well agaisnt KE rounds - in fact it'll be torn to shreds... but it isn't designed to fight tanks, is it now?